TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Modelling Soil Erosion and Sediment Transport on Post Mine Sites

Franziska Kunth, Jürgen Schmidt

MEDFRIEND – Istanbul, 16 November 2012

Soil and water conservation unit, TU Bergakademie Freiberg Agricolastr. 22, 09599 Freiberg, Germany email: franziska.kunth@student.tu-freiberg.de

Methods

Results

Conclusion

Introduction

Methods

Results

Conclusion

⇒ removal of overlying burden material leads to formation of extensive spoil-⇒ Impacts have to be rehabilitated into stabile self sustaining eco-systems with

www.lmbv.de

Motivation:

⇒ Severe soil losses on fragile, water
repellent and non-vegetated soils of
post mine sites
⇒ Erosion processes are strongly involved
in acidification of surface waters

Long-term renaturation of mine sites needs reliable assessment of soil erosion risks

Objectives:

- Development of a model based
 methodology to determine erosion
 risks on slopes in recultivation areas
- ⇒ Implementation of special soil
 characteristics of coal-containing
 mine sites (e.g. water repellency)
 in the soil erosion model
 EROSION 3D
- ⇒ Applying the EROSION 3D model to plan, dimension and test erosion control measures on post mining landscapes

Computer model

- Event and raster-based physical soil erosion model (cellular automata type)
- ⇒ Prediction of runoff and particle detachment, transport and deposition
- ⇒ Infiltration modelling according to GREEN&T (1911) approach
- ⇒ Momentum flux approach by SCHMIDT (1996) describes particle detachment and transport

<u>Model input-parameters:</u> Relief data

- Rainfall data
- Soil parameters

(e.g. bulk density, grain size, calibration factors, etc.)

Introduction

Methods

Results

Conclusion

Rainfall simulator:

- Three linked rainfall modules (height: 2 m, plot size: 3x1 m)
- Each with VeeJet Nozzles 80/100
- Runoff and sediment are collected
- Two steps: infiltration and erosion experiment
- Runoff feeding device allows simulation of variable virtual lenght of slope up to 50 m (SCHINDEWOLF, 2012)

Water repellency effects occuring during rainfall experiments on coal containing post mine sites

Introduction Methods

Results

Conclusion

Rainfall experiments on coal containing post mine sites

Water repellency reduces infiltration to a minimum

- → Rainfall intensity: 0,6 mm/min
- \rightarrow Rainfall duration: 1 h
- \rightarrow Wetting front infiltrates
 - less than 0,5 cm

Rainfall experiments on coal containing post mine sites

Experimentally determined EROSION 2D/3D calibration factors:

* Data from "Parameter catalogue of Saxony" (Michael, 2000) for dry and sandy ploughed land

Comparison of measured infiltration rate and E2D/3D-simulated infiltration curve

Calibration of calculated infiltration rates by water repellency factor

Rainfall experiment on crusted mine sites

Comparison of infiltration rates and sediment concentrations: with/without soil crust

Rainfall experiment on crusted mine sites

Comparison of infiltration rates and sediment concentrations: with/without soil crust

Rainfall experiment on crusted mine sites

Comparison of infiltration rates and sediment concentrations: with/without soil crust (rainfall intensity: 0,63 mm/min)

Introduction

Methods

Results

Conclusion

Conclusions

- ⇒ Sediment transport strongly
 depends on surface conditions
- \Rightarrow Concerning post mine sites:
 - Biological soil crusts
 - Water repellency
 - Lack of vegetation

Conclusions

- ⇒ Water repellency contributes to increased surface runoff
- ⇒ Concentrated runoff in surface depressions produces high erosion rate
- Calibration factor for water repellency enables use of EROSION 3D for modelling erosion processes on post minesites

Thank you for your attention!

Franziska Kunth

uropa fördert Sachser

Soil and water conservation unit, TU Bergakademie Freiberg Agricolastr. 22, 09599 Freiberg, Germany email: franziska.kunth@student.tu-freiberg.de

