Institut International d'Ingénierie de l'Eau et de l'Environnement

International Institute for Water and Environmental Engineering

-ondation 2/E

Institut de recherche pour le développement Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederazion svizza

Direction du développement et de la coopération DDC

Hydrological and Erosion modeling of a small Sahelian catchment (Tougou) using the Kineros2 model

KARAMBIRI H., YACOUBA H., BARBIER B., MOUNIROU L. A., TIDJANI OUSMANE H., SOMDA M. L.W.

E-mail: harouna.karambiri@2ie-edu.org

INTERNATIONAL CONFERENCE Sediment transport modeling in hydrological watersheds and rivers 14-16 November 2012 - Istanbul, Turkey

Outline

- **1. Introduction issues**
- **2. Objectives**
- **3. Study catchment**
- 4. Materials and methods
- **5. Results and discussion**
- 6. Lessons learnt and perspectives

Environmental issues

Evolution of Sahelian soil surface characteristics under climate and human pressures

Program, U.S. Geological Survey

2. Objectives

Better understand the hydrological cycle at local scale and under a changing climate.

Better assess the different components of the water cycle (runoff, infiltration, evaporation, etc...) of the Tougou catchment related to land-use/land-cover changes

Better assess environmental degradation (soil erosion, dam silting, surface water quality degradation, etc..) related to the hydrological cycle modification.

Set up a hydrological modelling at small scale integrating environmental changes in the Sahel.

Land uses of the Tougou catchment

Land uses of the Tougou catchment

Land uses of the Tougou catchment

4. Materials and methods

Monitoring equipments (since 2004)

> Meteorological equipments

> Hydrological equipments

> Measurements

Soil physics

TRIMS infiltrometer

(Triple Rings Infiltrometer at Multiple Suctions)

Modeling

The KINEROS2 model: A KINEMATIC RUNOFF AND EROSION MODE (KINEmatic Runoff and EROsion) (Smith et *al.*, 1995)*

- ⇒ A physically-based model
- ⇒ An event-based model
- ⇒ A spatial distributed model
- ⇒ Hydrological processes
- Overland flow and infiltration
- Channel flow and Infiltration
- ⇒ Erosion processes
- Splash erosion
- Overland and channel erosion
- Overland and channel deposition

*Smith, R. E., Goodrich, D. C. & Quinton, J. N. (1995). Dynamic, distributed simulation of watershed erosion: the KINEROS2 and EUROSEM models. J. Soil Water Conserv. 50(5), 517–520.

- In KINEROS2 the catchment is treated as a cascading network of surface, channel and pond elements. Channels receive flow from adjacent surfaces or upslope channels. Rectangular surfaces may be cascaded or arranged in parallel to represent complex topography or erosion features.
- Each element is characterized by assigning parameter values that control runoff generation and erosion processes.
- The flow modeling in KINEROS2 requires a temporal record of rainfall rate at one or more locations.

The model running options:

☑ Nash-Sutcliffe criteria for model performance evaluation

$$Nash(Q) = 1 - \frac{\sum_{i=1}^{N} (Q(i)obs - Q(i)sim)^{2}}{\sum_{i=1}^{N} (Q(i)obs - Qmoy)^{2}}$$

- ✓ Calibration hydrological parameters: Manning roughness coefficient (n), Saturated hydraulic conductivity (Ks), Mean capillary drive (G)
- ☑ Calibration erosion parameters: Splash coefficient (c_f), soil cohesion coefficient (c_g)

 P_1

☑ Time step for simulation : 1 minute

5. Results and discussion

Soil physical properties

Cultivated soils		Site	Soil type	Tillage type	Crop type	Ksat (mm/h)	Ksat (Casenave and Valentin, 1992)	Bulk density Da (g/cm ³)	Porosity (%)
	_	S ₁	Loam	Light tillage + weeding + mounding	Millet, sorghum and cowpea	21-25		1.40-1.46	45-47
	(BV1	S ₂	Sandy	Means tillage + weeding + mounding	Millet, sorghum and cowpea	27-33	15-35	1.36-1.44	46-49
		S ₃	Sandy gravelly	Light tillage	Millet, sorghum and groundnut	16-19		1.46-1.48	44-45
ils	_	S ₄	Dry clay	No tillage	No crop	2-2.5	2-4	1.58-1.61	39-40
e so	3V2	S ₅	Gravelly			3-3.5	3-5	1.88-1.94	27-29
Bar	=	S ₆	Sand			12-15	10-20	1.66-1.70	36-37

Number of infiltration tests by site: 12; number of porosity tests by site: 9.

From Mounirou LA, et al. Measuring runoff by plots at different scales: Understanding and analysing the sources of variation. C. R. Geoscience (2012), <u>http://dx.doi.org/10.1016/j.crte.2012.08.004</u>

Annual rainfall, runoff and erosion

Plot scale

	Plat	2004		2005			2006			
	FIOL	Rainfall (mm)	Runoff (%)	Erosion (t/ha)	Rainfall (mm)	Runoff (%)	Erosion (t/ha)	Rainfall (mm)	Runoff (%)	Erosion (t/ha)
oils	PZC1	392	16%	5	449 -	46%	17	726	44%	14
ted so	PZC2		2%	9		21%	18		23%	10
Cultiva	PZC3		6%	6		21%	24		28%	18
<u>s</u>	PZN1		64%	42		79%	44		79%	64
lire soi	PZN2		83%	57		105%	62		91%	57
Ba	PZN3		11%	30		29%	76		61%	103

Crusted and bare soils showed higher runoff and seemed to be more sensitive to water erosion.

Catchment scale (BV0)

Year	Rainfall (mm)	Runoff (%)	Erosion (t/ha)
2004	392	11%	0,5
2005	449	20%	4
2006	726	23%	7

About 80% of total annual soil losses are caused by less than 40% of rainfall-runoff events.

Hydrological and erosion modeling

> Selection of rainfall-runoff events for calibration and validation

	Hydrology		Erosion			
	Date	Rainfall (mm)	Q _{max} (m3/s)	Date	Q _{max} (m3/s)	Erosion (Kg)
	06/10/2006	37	6,52	19/07/2006	2,35	46007.2
	04/08/2006	59	4,134	15/09/2006	1,962	46071.5
CALIBRATION	22/08/2006	53,5	4,000	18/09/2006	0,550	31596.6
	19/07/2006	31,5	2,35	06/10/2006	6,52	17493.7
	15/09/2006	13	1,962	27/10/2006	0,960	5695.7
	12/09/2006	14	1,087	11/08/2006	0,478	7620.7
VALIDATION	27/10/2006	12,5	0,960	12/09/2006	1,087	1150.3
VALIDATION	18/09/2006	8,5	0,550	22/08/2006	4,000	1794.4
	11/08/2006	8,5	0,478	04/08/2006	4,134	2060.6

Model parametrization

Parameters	Symbol	Values		Unit	References
		Plane	channel		
Saturated hydraulic conductivity	Ks	3,3	0	mm/h	Mesure de terrain
Mean capillary drive	G	77	-	mm	(Rawls et al., 2000)
Poral distribution index	λ	0,35	-	-	(Rawls et al., 2000 ; Karambiri, 2003)
Total porosity	ϕ	0,44	-	m ³ /m 3	Mesure de terrain
Manning roughness coefficient	n	0,022	0,025	-	(Woolhiser, 1975 ; Lancastre, 2008)
soil cohesion coefficient	Cg	0,02	0,02	-	(Foster et Smith, 1984)
Splash coefficient	Cf	198,3	0	-	(Foster et al, 1983)

Hydrological calibration

Hydrological validation

Hydrological parameters	Saturated hydraulic conductivity (Ks)	Manning roughness coefficient (n)	Mean capillary drive (G)	
Initial parameters	3.3	0.022	77	
Optimum parameter	rs 5.775	0.0119	87.01	

Erosion calibration and validation

Erosion parameters

	Splash coefficient (cf)	Soil cohesion coefficient (cg)
Initial parameters	198,3	0,02
Optimum parameters	2111	39.5

Representation of the Tougou catchment (BV0) by a cascade of planes and channels taking into account the soil surface characteristics

27

	Selection of rainfall-	Date		Max discharge (m3/s)
	calibration and		04 June 2005	42.9
	validation		14 July 2006	24.4
		CALIBRATION	10 July 2005	23.3
			09 August 2005	16.1
			19 July 2006	15.5
			16 August 2004	11.2
			30 June 2005	14.9
		VALIDATION	21 July 2005	3.7
			29 July 2005	1.9
			04 August 2005	10.5

	Cultivated	channels	
	soils		
Total porosity	0,370	_	
Saturated hydraulic conductivity (Ks in	23,4 / 19.6	0	
mm/h)			
Manning roughness coefficient (n)	0,1 / <mark>0.03</mark>	0,05	
Mean capillary drive (G in cm)	26 / 21.84	_	
Poral distribution index (λ)	0,32	_ 4	28

Model parametrization

Hydrological simulations

The bi-modal behavour of the catchment was never reproduced by the model !

Remarks:

Simulations do not show the bi-modal shape of observed hydrographs

Simulated runoff volumes are underestimated

A sensitivity analysis showed a strong influence of the roughness coefficient (n) on the hydrographs shapes, whereas the saturated hydraulic conductivity and the mean capillarity drive influence the runoff volume and the maximum discharge

Hypothesis of 2 connected catchments

6. Lessons learnt and perspective

Traditional hydrological and erosion modeling (using apparent parameters for the basin) showed limitations in this area of the Sahel because of the strong seasonal changes of land uses/cover *There is a need to move toward seasonal or event-based parameterization*

 Gaps in hydrological and erosion processes analyzing and understanding from plot to catchment scale
Document more scaling effect on runoff and erosion.

Scale effect analysis experiments

See Mounirou LA, et al. Measuring runoff by plots at different scales: Understanding and analysing the sources of variation. C. R. Geoscience (2012), <u>http://dx.doi.org/10.1016/j.crte.2012.08.004</u>

////////FOR YOUR ITTEMNING

WELCOME TO

Ouagadougou, April 1st – 5, 2013

Science and Eco-innovation for a sustainable development of natural resources

th Edition

<u>Sub-Theme 1</u>: Climate and Water Cycle <u>Sub-Theme 2</u>: Pollution, Water Quality and Ecosystems <u>Sub-Theme 3</u>: Building Eco-materials and Sustainability of infrastructures <u>Sub-Theme 4</u>: Renewable Energies

Deadline for abstracts reception is <u>31 December 2012</u>

More information at : <u>www.2ie-edu.org</u> Or email to : <u>js2013@2ie-edu.org</u> 33