

Uncertainty analysis of sedimentation measurement in complex floodplains: A case study in the Mekong Delta - Vietnam

Nguyen Van Manh, GFZ- German Research Center for Geoscience

Slide 1

- 1. Study objective study area
- 2. Monitoring network
 - Sediment trap
 - Trapping sites
 - Analysed datasets
 - Trap retrieval test
- 3. Uncetainty analysis
 - Monte Carlo scheme
 - Uncertainty bounds
- 4. Conclusion

Objective – Study area

Objective: Quantification of sediment–nutrient deposition including uncertainty in the Mekong Delta floodplains

The Mekong Delta:

WISDOM

Initiative

A German - Vietnamese

Intensive rivers networks: 91.061 km Inundation time is from 3-5 months Intensive cultivation in floodplains

High uncertainty

Sampling uncertainty: => cluster of traps Measurement uncertainty: in submerged condition => retrieval test

Monitoring network - Sediment traps

Field work: sediment trapping – in flood 2011 from August to December

Available method: Post-event surveys, conveyance losses, artificial marker horizons; erosion pin, **sediment trap.**

Trap design: Artificial grass: 30x 30 cm

WISDOM

Initiative

A German - Vietnamese

8 fishing rod strings – working like bowl-shaped

Monitoring network - Trapping sites

1. Identify the sediment trapping sites

Flood depth a) 0 -1 m b) 1-2 m c) > 2m Dike systems a) High dike b) Low dike Inundated duration Long-term

WISDOM

Initiative

A German - Vietnamese

Inundation maps overlay for the years: 2000, 2002, 2004, 2007, 2008

Monitoring network - Trapping sites

1. Identify the sediment trapping sites

Flood depth a) 0 -1 m b) 1-2 m c) > 2m Dike systems a) High dike b) Low dike Inundated duration Long-term

WISDOM

Initiative

A German - Vietnamese

- 2. Sediment trap installations
- 3. Sediment trap collections
- 4. Sediment sample analysis

Nutrient and grain size, pH

tion maps overlay for the years: 2000, 2002, 2004, 2007, 2008

Monitoring network - Datasets

WISDOM A German - Vietnamese Initiative

Monitoring network - Trap retrieval test

WISDOM

Initiative

A German - Vietnamese

Higher sample mass with higher uncertainty

Uncetainty analysis - Monte Carlo scheme

WISDOM A German - Vietnamese Initiative

Sediment mass

Step 1: PDFs of cluster traps and single traps

Step 2: Uncertainty in wet-dry correction models

Step 3: Correct calculated deposition mass

Step 4: Uncertainty bounds for sediment mass

Nutrient fraction

Step 5: PDFs of nutrient fractions

Step 6: PDFs of nutrient mass

Step 7: Uncertainty bounds for nutrient mass

Grain size, pH

Step 8: PDFs of grain size fractions and pH

Step 9: Uncertainty bounds for grain size fraction and pH

Uncetainty analysis – Sediment mass

A German - Vietnamese Initiative

WISDOM A German - Vietnamese Initiative

Uncetainty analysis – Nutrient fraction

400

350

- -

Slide 10

Uncertainty bounds of Total Organic Carbon data

PDF means of TOC
90% Cl of PDF
10% Cl of PDF

Uncetainty analysis – Grain sizes and pH

A German - Vielnamese Initiative

Uncetainty analysis – Sediment and Nutrient

Slide 12

Uncertainty bounds in term of proportional to PDF means 120 Sediment mass bounds Nitrogen bounds Phosphorus bounds 100 Potassium bounds Organic Carbon bounds 80 60 Percent (%) 40 20 upper bound 0 lower bound -20 -40 -60 10 20 30 40 50 60 70 0 Cluster trap and single trap

WISDOM

Initiative

A German - Vielnamese

GFZ

WISDOM A German - Vietnamese Initiative

- Proposed a procedure to estimate uncertainty in sediment trap sampling particularly suitable in large and complex floodplains.
- The main uncertainty sources are the trap retrieval from still inundated floodplains and human interference on the floodplains.
- The 90% CIs are less than 100% of the mean values for the entire dataset.
- Sediment retrieval uncertainties are systematic and quantifiable,
- The variability caused by human interference is difficult to attribute to distinct activities and factors
- The derived data and uncertainty estimates can provide the required calibration data for a sediment transport model for floodplains

WISDOM A German - Vietnamese Initiative

Thank you very much

