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I Motivation for coupled runoff-sediment 
modelling

1. Understand, quantify and predict hydrological 
fluxes in different geo-ecosystems



2. Understand, quantify and predict water related 
erosion processes

I Motivation for coupled runoff-sediment 
modelling



3. Understand, quantify and predict fluvial 
sediment transport and deposition processes

I Motivation for coupled runoff-sediment 
modelling



Episodic runoff processes trigger rather sudden 
sediment mobilisation and deposition

Peculiarities of drylands …



Soil losses and sediment deposition is the major threat for 
sustainable landscape and water resources functions

Sedimentation in the Barasona reservoir, Isábena/Èsera River [Bronstert, 2005]

Peculiarities of drylands …
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water & sediment events: highly variable in time and space

Peculiarities of drylands …



4. Understand, quantify and predict chemical 
transport and transformation processes

I Motivation for coupled runoff-sediment 
modelling
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WASA-SED: 
A meso-scale hydro-sedimentological model:

spatially distributed, 
process-oriented, 
catena-based,

Spatial resolution: 
hillslope to meso-scale

Temporal resolution: 
hourly or daily time steps

Code in Fortran90, currently ca. 50 sub-routines

II An integrated hydro-sedimentological 
model: WASA-SED

Güntner, A., Bronstert, A., 2004, Journal of Hydrology



Structure of spatial modelling units



Sub-basins



Landscape Units (LU)



Terrain components (TC)



Soil-vegetation components (SVC)



di = total depth of horizon i (m) 
ds,i = saturated depth of horizon i (m)

Scheme of the structure TC and SVCs



Profile



1) Interception model
2) Evapotranspiration model
3) Infiltration model
4) Soil water model
5) Lateral redistribution among spatial units
6) Deep groundwater
7) Erosion

Process Representation 
at the Hillslope Scale



1) Interception model

Simple bucket approach is used in WASA:

, with:

It = water in interception storage at timestep t (mm)
Ic = capacity of canopy interception storage (mm)
P = precipitation (mm)
PI = intercepted precipitation (mm)
EI =  evaporation from interception storage (mm)
Epot = potential evaporation (mm)



2) Evapotranspiration model
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a) The classical Penman-Monteith approach (1965):

• is used for evaporation calculation from the 
interception storage and from open water bodies

b) The Shuttleworth & Wallace approach (1985)



3) Infiltration model

Green-AMPT approach in an adaptation of Peschke 
(1977,1987) and Schulla (1997)

RF = Infiltration routine (mm Δt-1)
P = precipitation (mm Δt-1)
PI = intercepted precipitation (mm Δt-1)
Rs,TC = lateral surface inflow from a TC of a higher

topographic position (mm Δt-1)
Rs,SVC = lateral surface inflow from SVCs within

the same TC (mm Δt-1)



θi,t = soil moisture of the horizon i at the timestep t (mm)
Ri = incoming fluxes into the horizon i (mm)
Qi = outgoing fluxes from the horizon i (mm)

Soil water balance for each horizon i:

em que:

Qv,i = percolation from one horizon i next horizon below (mm)
Ql,i = lateral flow leaving the horizon i (mm)

4) Soil water model



• Lateral surface flow 

• Lateral subsurface flow 

5) Lateral redistribution among spatial units
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Erosion

MUSLE (Modified Universal Soil Loss Equation):

Y = 11.8· (Qsurf· qpeak · ATC)0.56 ·KUSLE · CUSLE · PUSLE · LSUSLE · CFRG

Y is the gross sediment yield [t]

Qsurf is the surface runoff volume [mm water/ha]

qpeak is the peak runoff rate [m3/s]

ATC is the area of the TC [ha] 

KUSLE, CUSLE, PUSLE , LSUSLE are the USLE-factors 

CFRG is coarse fragment factor 

+ transport capacity concept
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River Flow

River flow:

Manning‘s equation 

Continuity equation

Muskingum Routing
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Suspended sediment:

Transport capacity concept

seddeposition = (Sed_concs,max - Sed_conccurrent ) · V

sederosion = (Sed_concs,max - Sed_conccurrent) · V · K · C

vpeak(t): peak channel velocity (m/s),
V: Volume of water in the reach (m³) 
K: channel erodibility factor (cm / (h * Pa))
C: channel cover factor (–)

b
peakss vaconcSed ,max,_ ⋅=

Sediment transport in the river
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Sediment transport in the river

Bedload:

Bedload transport formulae in the river module (Mueller et al., 2010)
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Reservoir Module: Conceptual layers
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Reservoir Module:
Spatial representation of the reservoir
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Water discharge in the reservoir’s cross 
sections:

Simple mass conservation concept

Qj: water discharge at the cross-section j;
vk: fraction of reservoir volume represented by that cross-section

Sediment transport in the reservoir
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non-equilibrium sediment transport in the 
reservoir’s cross sections:

Approach by Han and He (1990):

S: sediment concentration; 
S*: sediment carrying capacity; 
Q: discharge per unit width; 
ω: settling velocity; 
α: coefficient of saturation recovery

Sediment transport in the reservoir
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Sediment transport in the reservoir

Sediment carrying capacity formulae in the reservoir module (Mamede, 2008)
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III. Connectivity: 
control of water and sediment delivery

Connectivity: transfer, storage and re‐entrainment processes of water
and sediments among different landscape components

A: Connectivity between 
hillslopes, valley bottoms 

and the river

B: Transmission losses and 
temporary storage in the 

river

C: Retention in and transfer 
through reservoirs

D: Integrated meso-scale 
catchment model
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Northeast Spain (Catalonia and Aragón): sub-humid 
or semi-arid climate
Northeast Brazil (Ceará): semi-arid climate with a 
pronounced seasonality

These research regions include of a set of 
individual (but nested) catchments of different 

spatial scales

IV. Application Examples
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Uppe Yaguaribe (NE Brazil) 
Várzea do Boi Bengue Aiuaba exp. hillslopes

Upper 
Jaguaribe
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Ésera (NE Spain, Ebro region) 
Isábena Villacarli Ball exp. badlands

Villacarli
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overview of the nested research catchments 
in Spain (S1 … S5) and Brazil (B1 … B6)
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Uppe Yaguaribe (NE Brazil) 
Várzea do Boi Bengue Aiuaba exp. hillslopes

Upper 
Jaguaribe
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Uppe Yaguaribe (NE Brazil) 
Várzea do Boi Bengue Aiuaba exp. hillslopes



40

Monitoring sections and the hydrologic and sediment 
measurements in the Upper Jaguaribe Basin

No. Nome Tipo Intervalo Tipo Intervalo
1 Alto Jaguaribe 24.600 a Dia --- -----
2 Seção de controle - AJ 20.700 b Dia c / d Dia
3 Várzea do Boi 1.221 a Dia e Acumulado 47 anos
4 Benguê 933 a Dia c / e Dia / Acumulado 4 anos
5 Aiuaba 12 a / b Dia / 15 min. c Dia

a - Balanço hídrico no reservatório
b - Nível de água + curva-chave
c - Sedimento em suspensão - curva-chave de sedimentos
d - Arraste de leito - ajuste, com dados de campo, da equação modificada de Meyer-Peter e Müller
e - Sedimento em suspensão e arraste de eleito - medida do assoreamento do açude

Seção de monitoramento Área
(km²)

Medição de vazão Medição de sedimento
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Sediment budgets at the nested catchments in the 
Upper Jaguaribe Basin, Brazil
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Ésera (NE Spain, Ebro region) 
Isábena Villacarli Ball exp. badlands

Villacarli
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NE Spain: Assessment of water flows and sediment yields
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NE-Spain: Modeled Water hydrological fluxes 
at the Villacarli, Catchment
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NE Spain: Modeled of sediment yields
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Estimates of sediment transfer and deposition rates in the Isábena 
catchment for the period 2007 – 2009 (López-Tarazón et al. (2012)

NE-Spain: Estimated Sediment transfer and 
deposition in the Isábena, Catchment, 
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RIVER Modelling Temporary river storage of sediments



48

Sediment Transport in the River System
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Temporary river storage of sediments

Upstream River Stretch 
in the Mountains
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Barasona Reservoir (Spain) (ca. 1340 km2)



comparison of bathymetric surveys of the Barasona Reservoir, Spain

Reservoir Sedimentation
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RESERVOIR Monitoring & Modelling
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Specific Conclusions (from the case studies)
Water runoff  tends to decrease with area: due to 
locally constrained rainfall patterns AND river 
transmission losses

sediment transfer from the hillslopes to the drainage 
network is the controlling factor of sediment 
connectivity at all scales.
Deposition along the topography is responsible for 
retaining 50 to 60% of eroded sediment. 
At the Aiuaba experimental catchment, there is a 
higher percentage (74%) of sediment deposited in the 
landscape, probably due to protected natural 
vegetation and fractured hydro-geological conditions

V Conclusions and Outlook
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Generic Conclusions:
High relevance of “hot-spots” for sediment production
connectivity between the landscape compartments 
plays a very relevant role for the mass transport (both 
water and sediment) and for transport times
Varying relevance in different space-time scales !
Integrated hydro-sedimentological modelling is 
essential for sustainable land use and reservoir use 
management in drylands
percentage of sediment retention in reservoirs is 
strongly dependent on the scale, increasing with 
increased area
Stronger sensitivity of the reservoir sedimentation to 
land use and water management than to the climatic 
scenarios

V Conclusions and Outlook
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Scientific challenges:

Quantification at the large scale
> how to consider connectivity issues 

at the relevant scales ?
In-stream retention and transport
Parameterisation of variability of nature
Scenario calculation and prognosis 
Management of sedimentation
Integration of hydro-chemical fluxes

V Conclusions and Outlook
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