

Process-based Modeling of Erosion and Sediment Transport in meso-scale Mediterranean Catchments: from the Hillslopes via the River System to Reservoirs

Axel Bronstert¹, José c. de Araújo², Ramon J. Batalla^{3,5}, Till Francke¹, Andreas Güntner⁴, Jose Lopez-Tarazon³, Pedro Medeiros⁶, Eva Müller¹, Damiá Vericat^{3,5}

Process-based Modeling of Erosion and Sediment Transport in meso-scale Mediterranean Catchments: from the Hillslopes via the River System to Reservoirs

Outline

- I. Motivation for coupled runoff-sediment modelling
- II. An integrated hydro-sedimentological model
- III. Connectivity: the special challenge of dryland regions
- IV. Applications examples
- V. Conclusions and outlook

Motivation for coupled runoff-sediment modelling

1. Understand, quantify and predict hydrological fluxes in different geo-ecosystems

Motivation for coupled runoff-sediment modelling

2. Understand, quantify and predict water related erosion processes

Motivation for coupled runoff-sediment modelling

3. Understand, quantify and predict fluvial sediment transport and deposition processes

Peculiarities of drylands ...

Episodic runoff processes trigger rather sudden sediment mobilisation and deposition

Peculiarities of drylands ...

Soil losses and sediment deposition is the major threat for sustainable landscape and water resources functions

Sedimentation in the Barasona reservoir, Isábena/Èsera River [Bronstert, 2005]

Peculiarities of drylands ...

8

water & sediment events: highly variable in time and space

Motivation for coupled runoff-sediment modelling

4. Understand, quantify and predict chemical transport and transformation processes

An integrated hydro-sedimentological model: WASA-SED

WASA-SED:

A meso-scale hydro-sedimentological model:

- spatially distributed,
- process-oriented,
- catena-based,
- Spatial resolution: hillslope to meso-scale
- Temporal resolution: hourly or daily time steps
- Code in Fortran90, currently ca. 50 sub-routines

Structure of spatial modelling units

51.64 8 ŝ

Landscape Units (LU)

Terrain components (TC)

Soil-vegetation components (SVC)

Process Representation at the Hillslope Scale

- 1) Interception model
- 2) Evapotranspiration model
- 3) Infiltration model
- 4) Soil water model
- 5) Lateral redistribution among spatial units
- 6) Deep groundwater
- 7) Erosion

1) Interception model

Simple bucket approach is used in WASA:

$$I_t = I_{t-1} + P_I - E_I$$
 , with:

$$P_I = \min(P, (I_c - I_{t-1}))$$
$$E_I = \min(E_{pot}, I_t)$$

 I_t = water in interception storage at timestep t(mm) I_c = capacity of canopy interception storage(mm)P = precipitation(mm)P_I = intercepted precipitation(mm) E_I = evaporation from interception storage(mm) E_{pot} = potential evaporation(mm)

2) Evapotranspiration model

a) The classical Penman-Monteith approach (1965):

 is used for evaporation calculation from the interception storage and from open water bodies

b) The Shuttleworth & Wallace approach (1985)

3) Infiltration model

Green-AMPT approach in an adaptation of Peschke (1977,1987) and Schulla (1997)

$$R_F = P - P_I + R_{s, TC} + R_{s, SVC}$$

R _F = Infiltration routine	(mm ∆t ⁻¹)
P = precipitation	(mm ∆t ⁻¹)
P _I = intercepted precipitation	(mm ∆t ⁻¹)
$R_{s,TC}$ = lateral surface inflow from a TC of a higher	
topographic position	(mm ∆t ⁻¹)
R _{s.SVC} = lateral surface inflow from SVCs within	
the same TC	(mm ∆t ⁻¹)

4) Soil water model

Soil water balance for each horizon i:

$$\Theta_{i,t} = \Theta_{i,t-1} + R_i - Q_i$$

$\theta_{i,t}$ = soil moisture of the horizon i at the timestep t	(mm)
R _i = incoming fluxes into the horizon i	(mm)
Qi = outgoing fluxes from the horizon i	(mm)

em que:

$$Q_i = Q_{v,i} + Q_{l,i}$$

 $Q_{v,i}$ = percolation from one horizon i next horizon below (mm) $Q_{i,i}$ = lateral flow leaving the horizon i (mm)

5) Lateral redistribution among spatial units

Lateral surface flow

Lateral subsurface flow

Erosion

And the second conference international Conference International Rivers Second Rivers and Rivers Andrews Andre Andrews And

Y

MUSLE (Modified Universal Soil Loss Equation):

$$f = 11.8 \cdot (Q_{surf} \cdot q_{peak} \cdot A_{TC})^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$$

Y is the gross sediment yield [t]

Q_{surf} is the surface runoff volume [mm water/ha]

 q_{peak} is the peak runoff rate [m³/s]

 A_{TC} is the area of the TC [ha]

 K_{USLE} , C_{USLE} , P_{USLE} , LS_{USLE} are the USLE-factors CFRG is coarse fragment factor

+ transport capacity concept

River Flow

River flow:

Manning's equation

$$v(t) = \frac{R_s^{2/3} \cdot S^{1/2}}{n}$$

Continuity equation

$$q_{out,2} = C_1 \cdot q_{in,2} + C_2 \cdot q_{in,1} + C_3 \cdot qout,1$$

Muskingum Routing

$$C_{1} = \frac{(\varDelta t - 2KX)}{2K(1 - X) + \varDelta t}$$

$$C_{2} = \frac{(\varDelta t + 2KX)}{2K(1 - X) + \varDelta t}$$

$$C_{3} = \frac{(2K(1 - X) - \varDelta t)}{2K(1 - X) + \varDelta t}$$

Sediment transport in the river

Suspended sediment:

Transport capacity concept

$$Sed_conc_{s,max} = a \cdot v_{s,peak}^{b}$$

$$sed_{deposition} = (Sed_conc_{s,max} - Sed_conc_{current}) \cdot V$$

v_{peak}(t): peak channel velocity (m/s),
V: Volume of water in the reach (m³)
K: channel erodibility factor (cm / (h * Pa))
C: channel cover factor (–)

Sediment transport in the river

Bedload:

Formuta	Range of conditions
1. Meyer-Peter and Müller (1948) $q_{s} = \frac{8(r - r_{eff})^{1.5}}{r_{eff}^{0.5}} 1000$	for both uniform and non-uniform sediment, grain sizes ranging from 0.4 to
with: $\tau = \rho g dS$ and $\tau_{crit} = 0.047 (\rho_s - \rho) g D_m$	$29\mathrm{mm}$ and river slopes of up to $0.02\mathrm{mm^{-1}}$.
2. Schoklitsch (1950) $q_8 = 2500S^{1.5}(q - q_{crit})1000\frac{\rho_8 - \rho}{r_0}$	for non-uniform sediment mixtures with D_{50} values larger than 6 mm and riverbed slopes
with: $q_{\text{crit}} = 0.26 \left(\frac{\rho_5 - \rho}{\rho}\right)^{\frac{5}{3}} \frac{D_{50}^4}{S^4}$	varying between 0.003 and $0.1\mathrm{mm^{-1}}$.
3. Smart and Jaeggi (1983)	for riverbed slopes varying between
$q_{\rm s} = 4.2q S^{1.6} \left(1 - \frac{\tau_{eff}}{\tau^4}\right) / \left(\frac{\rho_{\rm s}}{\rho} - 1\right) 1000 (\rho_{\rm s} - \rho)$	$0.03-0.2 \text{ m m}^{-1}$ and D_{50} values
with: $\tau^* = \frac{dS}{\left(\frac{dS}{dt}-1\right)D_{50}}$ and $\tau^*_{crit} = \frac{d_{crit}S}{\left(\frac{dt}{dt}-1\right)D_{50}}$	comparable to the ones of
n marte i novare porte i nomenen na antenna en el competencia en el com el competencia en el compete	the Meyer-Peter and Müller equation.
4. Bagnold (1956)	reshaped by Yalin (1977), applicable for sand
$q_{\rm s} = 4.25 t^{*0.5} \left(t^* - t^*_{\rm crit} \right) \left(\left(\frac{\rho_{\rm s}}{\rho} - 1 \right) g D_{50}^3 \right)^{0.5} 1000 \left(\rho_{\rm s} - \rho \right)$	and fine gravel and moderate riverbed slopes.
5. Rickenmann (2001)	for gravel-bed rivers and torrents with bed
$q_{s} = 3.1 \left(\frac{D_{90}}{D_{30}}\right)^{0.2} r^{*0.5} \left(r^{*} - r^{*}_{cnit}\right) \cdot Fr^{1.1} \left(\frac{\rho_{2}}{\rho} - 1\right)^{-0.5} \left(\left(\frac{\rho_{3}}{\rho} - 1\right)gD_{50}^{3}\right)^{0.5} 1000 \left(\rho_{s} - \rho\right)$	slopes between 0.03 and $0.2\mathrm{mm^{-1}}$ and
with: $Fr = \left(\frac{e}{g \cdot d}\right)^{0.5}$	for D_{50} values comparable to the ones of the Meyer-Peter and Müller equation in the lower slope range with an average D_{50} of 10 mm in the higher slope ranges.

Bedload transport formulae in the river module (Mueller et al., 2010)

Reservoir Module: Conceptual layers

28

Water discharge in the reservoir's cross sections:

Simple mass conservation concept

$$Q_j = Q_{in} - (Q_{in} - Q_{out}) \sum_{k=m}^{j} v_k$$

Qj: vk:

water discharge at the cross-section *j*; fraction of reservoir volume represented by that cross-section

S:

S*:

Q:

 ω :

α:

1

non-equilibrium sediment transport in the reservoir's cross sections:

Approach by Han and He (1990):

$$\frac{dS}{dx} = \frac{\alpha\omega}{q}(S^* - S) \qquad S_j = S_j^* + (S_{j-1} - S_j^*).e^{-\left(\frac{\alpha.\omega.L}{q}\right)}$$

- sediment concentration;
- sediment carrying capacity;
 - discharge per unit width;
 - settling velocity;
- coefficient of saturation recovery

Sediment transport in the reservoir

		Authors, range of sediments	Transport formula	Auxiliary equations
		Wu et al. (2000): 0.004–100 mm	$q_{b,k} = P_k \phi_{b,k} \sqrt{\Delta g d^3}$	$\begin{split} \phi_{\mathrm{b},k} &= 0.0053 \cdot \left[\left(\frac{n'}{\pi} \right)^{3/2} \frac{\mathrm{rb}}{\mathrm{t}_{c,k}} \right]^{2,2}, \ n = R_{\mathrm{h}}^{2/3} S_f^{1/2} / v, \\ n' &= \sqrt[6]{d_{50}}/20, \ \mathrm{t}_{c,k} = (\gamma_s - \gamma) d_k \theta_k \xi_k, \end{split}$
				$\zeta_k = (P_{\mathbf{e},k}/P_{\mathbf{h},k})^{-0.6}, P_{\mathbf{e},k} = \sum_{j=1}^{q} P_{\mathbf{b},j} \cdot (d_k/d_k + d_j),$ $P_{\mathbf{b},k} = \sum_{j=1}^{q} P_{\mathbf{b},j} \cdot (d_j/d_k + d_j), P_{\mathbf{b},k} = \forall R_k S_k$
sédiments	Bans les might		$q_{\mathrm{s},k} = P_k \phi_{\mathrm{s},k} \sqrt{\Delta g d^3}$	$\phi_{s,k} = 0.0000262 \cdot \left[\left(\frac{\tau}{\tau_{c,k}} - 1 \right) \cdot \frac{V}{\omega_k} \right]^{1.74},$ $\omega = \sqrt{13.95 \cdot \left(\frac{v}{2} \right)^2 + 1.09 \Delta g d} - 13.95 \cdot \left(\frac{v}{2} \right)$
rationale ransport de	versarts et	Ashida and Michiue (1973):	$q_{b,k} = 17 \cdot P_k u_{c,k} d_k \tau_{c,k} \left(1 - \frac{\tau_{c,k}}{\tau_k}\right) \left(1 - \sqrt{\frac{\tau_{c,k}}{\tau_k}}\right)$	$\tau_k = \frac{u^{*2}}{\Delta g d_k}, u^* = \sqrt{g R_h S_f}, \\ \tau_{e,k} = \frac{u_{e,k}^2}{\Delta g d_k},$
rance Intern Isalion du h	100000	0.040–100 mm		$u_{e,k} = \frac{V}{5.75 \log(\frac{R_b/d_{50}}{1+2t_k})}, \tau_{c,k} = \frac{u_{c,k}^2}{\Delta g d_k}$ $d_k/d_{50} < 0.4: u_{c,k} = \sqrt{0.85 \cdot u_{c,50}}$
No.	6 09/8			$\begin{array}{ll} d_k/d_{50} > 0.4: & u_{c,k} = \log 19/\log (19 \cdot d_k/d_{50}) \cdot u_{c,50}, \\ u_{c,50} = 0.05 \cdot \Delta_g d_{50} \end{array}$
vater-	rkey/Turqu		$q_{\mathbf{s},k} = C \cdot V \left(e^{-p \cdot a} - e^{-p \cdot h} \right) \cdot \frac{e^{p \cdot a}}{p}$	$p = \frac{6 \cdot \omega_k}{0.412 \cdot u^* h}, C = 0.025 \cdot p_k \left(\frac{f(\varepsilon_0)}{\varepsilon_0} - F(\varepsilon_0)\right),$ $f(\varepsilon_0) = \frac{1}{\sqrt{2\pi}} e^{\left(-0.5 \cdot \varepsilon_0^2\right)}, F(\varepsilon_0) = \frac{1}{\sqrt{2\pi}} \int_{\varepsilon_0}^{\infty} e^{\left(-0.5 \cdot \varepsilon_0^2\right)} d\varepsilon,$
	out, Tu		-16-12	$\varepsilon_0 = \frac{\omega_k}{0.75 \cdot a^*}$
Ň	Istant	IRTCES (1985):	$q_t = \Omega \frac{Q^{10}S^{11}}{B^{0.6}}$	Ω = 1600 for loss sediment $Ω = 650$ for $d_{50} < 0.1$ mm $Ω = 300$ for $d_{50} > 0.1$ mm
		0.001-100 mm		
₩		Ackers and White (1973):	$q_t = P_k \psi V d_k \left(\frac{V}{u^*}\right)^{n_0} \left(\frac{F_{gr}}{F_{gr, cr} \otimes k} - 1\right)^{m_o}$	$d_k^* = d_k (\Delta g/v^2)^{1/3} \ 1 < d_k^* < 60: n_o = 1 - 0.56 \cdot \log(d^*),$
Ĭ	315	0.040-100 mm		$m_0 = \frac{9.66}{d^4} + 1.34$, $\psi = 10^{-3.53+2.86 \cdot \log(d^*) - \log^2(d^*)}$, $E_{-10} = \frac{0.23}{d^4} = 0.14 \text{ for } d^* > 60 \text{ or } = 0 \text{ or } = 1.5$
1	11.2			$r_{\text{gr,cr}} = \frac{1}{\sqrt{d^*}} - 0.14 \text{ for } a_{\vec{k}} > 00: n_0 = 0, m_0 = 1.5,$

Sediment carrying capacity formulae in the reservoir module (Mamede, 2008)

III. Connectivity: control of water and sediment delivery

Connectivity: transfer, storage and re-entrainment processes of water and sediments among different landscape components

IV. Application Examples

- Northeast Spain (Catalonia and Aragón): sub-humid or semi-arid climate
- Northeast Brazil (Ceará): semi-arid climate with a pronounced seasonality

These research regions include of a set of individual (but nested) catchments of different spatial scales

Ésera (NE Spain, Ebro region) → Isábena → Villacarli → Ball → exp. badlands

36

overview of the nested research catchments in Spain (S1 ... S5) and Brazil (B1 ... B6)

Na	Name of the	Area	annual	Main Water	Main Sediment measurements	
110.	catchment	(km²)	rainfall (mm)	measurements		
S1	badland	~ 0.03	~750	Discharge flume	Tubiditymeter; Isco sampling	
S2	Ball	10	~750	Water level sensor	Tubiditymeter; Isco sampling	
S3	Villacarli	41	730	Water level sensor	Tubiditymeter; Isco sampling	
S4	lsábena (gauge Capella)	445	450-1600	Water level sensor	Tubiditymeter; Isco sampling	
S5	Ésera (upstream Barasona res.), incl. Isábena	1224	500-2000 in the high mountains	Water level sensor	Reservoir bathymetry	
B1	experim. hillslope within Benguê	2.8	~600		long-term sediment deposition by Cs137	
B2	Aiuaba micro basin	12	650	Discharge flume & reservoir level	Individual manual sampling	
B3	Benguê	933	560	Water level sensor	Reservoir bathymetry	
B4	Várzea do Boi	1,221	~500	Water level sensor	Reservoir bathymetry	
B5	Jaguaribe upstr. Orós reservoir	20,700	400 in the SW to 800 in	Water level sensor	Manual sampling	
B6	Upper Jaguaribe	24,600	the NE	Water level sensor		

Uppe Yaguaribe (NE Brazil) → Várzea do Boi → Bengue → Aiuaba → exp. hillslopes

Monitoring sections and the hydrologic and sediment measurements in the Upper Jaguaribe Basin

Seção de monitoramento		Área Medição de vazão		Medição de sedimento		
No.	Nome	(km ²)	Tipo	Intervalo	Tipo	Intervalo
1	Alto Jaguaribe	24.600	а	Dia		
2	Seção de controle - AJ	20.700	b	Dia	c / d	Dia
3	Várzea do Boi	1.221	а	Dia	e	Acumulado 47 anos
4	Benguê	933	а	Dia	c / e	Dia / Acumulado 4 anos
5	Aiuaba	12	a / b	Dia / 15 min.	c	Dia

a - Balanço hídrico no reservatório

- b Nível de água + curva-chave
- c Sedimento em suspensão curva-chave de sedimentos
- d Arraste de leito ajuste, com dados de campo, da equação modificada de Meyer-Peter e Müller
- e Sedimento em suspensão e arraste de eleito medida do assoreamento do açude

Sediment budgets at the nested catchments in the Upper Jaguaribe Basin, Brazil

41

Ésera (NE Spain, Ebro region) → Isábena → Villacarli → Ball → exp. badlands

42

NE-Spain: Estimated Sediment transfer and deposition in the Isábena, Catchment,

orsdan.

Estimates of sediment transfer and deposition rates in the Isábena catchment for the period 2007 – 2009 (López-Tarazón et al. (2012) 46

RIVER Modelling Temporary river storage of sediments

RIVER Modelling

Sediment Transport in the River System

48

RIVER Modelling

Temporary river storage of sediments

49

Barasona Reservoir (Spain) (ca. 1340 km²)

5

Reservoir Sedimentation

comparison of bathymetric surveys of the Barasona Reservoir, Spain

Reservoir Sedimentation

comparison of bathymetric surveys of the Barasona Reservoir, Spain

RESERVOIR Monitoring & Modelling

Bed elevation changes at four different cross sections of the Barasona reservoir, 1986-1993

RESERVOIR Monitoring & Modelling

Deposition patterns of the Barasona Reservoir (1986-1993)

Specific Conclusions (from the case studies)

- Water runoff tends to decrease with area: due to locally constrained rainfall patterns AND river transmission losses
- sediment transfer from the hillslopes to the drainage network is the controlling factor of sediment connectivity at all scales.
- Deposition along the topography is responsible for retaining 50 to 60% of eroded sediment.
- At the Aiuaba experimental catchment, there is a higher percentage (74%) of sediment deposited in the landscape, probably due to protected natural vegetation and fractured hydro-geological conditions

V Conclusions and Outlook

Generic Conclusions:

- High relevance of "hot-spots" for sediment production
- connectivity between the landscape compartments plays a very relevant role for the mass transport (both water and sediment) and for transport times
- Varying relevance in different space-time scales !
- Integrated hydro-sedimentological modelling is essential for sustainable land use and reservoir use management in drylands
- percentage of sediment retention in reservoirs is strongly dependent on the scale, increasing with increased area
- Stronger sensitivity of the reservoir sedimentation to land use and water management than to the climatic scenarios

V Conclusions and Outlook

Scientific challenges:

- Quantification at the large scale
 - > how to consider connectivity issues at the relevant scales ?
- In-stream retention and transport
- Parameterisation of variability of nature
- Scenario calculation and prognosis
- Management of sedimentation
- Integration of hydro-chemical fluxes

References for the WASA-SED Model

For hydrological modules:

Güntner, A., 2002. Large-scale hydrological modelling in the semi-arid North-East of Brazil. PIK-Report No. 77, Potsdam Institute for Climate Research, Germany.

Güntner, A. and Bronstert, A., 2004. Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas, Journal of Hydrology, 297: 136-161.

For WASA-SED:

Mamede, G., 2008. Reservoir sedimentation in dryland catchments. Unpublished PhD thesis at University of Potsdam, Germany.

Mueller, EN., Francke, T., Batalla, RJ., Bronstert, A. (2009). Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees, Catena, 79(3), 288-296,

SESAM Annual Report 2006: http://brandenburg.geoecology.unipotsdam.de/projekte/sesam/download/workingpapers/Annual Report SESAM06.pdf

WASA-SED Model documentation: http://brandenburg.geoecology.unipotsdam.de/projekte/sesam/download/wasa/Wasa Documentation.pdf

Process-based Modeling of Erosion and Sediment Transport in meso-scale Mediterranean Catchments: from the Hillslopes via the River System to Reservoirs

Acknowledgments

Projects funded by DFG (D) CAPES (Br) Catalan Government (E)

